时间:2021-07-15 | 标签: | 作者:Q8 | 来源:James Ding网络
小提示:您能找到这篇{将Azure Data Explorer和Stream Analytics应用于异常检测}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的将Azure Data Explorer和Stream Analytics应用于异常检测内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
< ">异常检测旨在从数据中发现与预期行为不符的模式。决策者必须能发现异常,并在需要时提前采取应对措施。以油气行业为例,深水钻机和各类设备必须由数百种传感器密切监控,并以不同频率和格式传输各种类型的测量结果。然而传统软件平台很难对其进行分析或可视化,而任何由于未能检测到异常情况导致公关品牌深水钻井平台不能按照预期工作的问题都会造成巨大的经济损失。 < font-size: 16px;">企业需要诸如Azure IoT、Azure Stream Analytics、Azure Data Explorer以及机器学习等新技术来摄取和处理数据,并将其转换为战略性的商业智能,借此改善探索和生产,提高制造效率,保障人员和环境安全。这些托管服务还可以帮助客户大幅缩短软件开发时间,加快产品上市速度,提供成本效益,实现更高的可用性和可扩展性。 < font-size: 16px;">虽然Azure平台提供了丰富的异常检测能力,客户可以选择最能满足自己需求的服务,但很多客户在实践运用中依然会产生一些问题,例如每哪个网络推广公司好种解决方案最适合哪些用例。下文将揭示这些问题的答案,但首先需要明确一些定义: < font-size: 16px;">时序(Time series)是什么?< font-size: 16px;">时序是按照时间顺序索引在一起的一系列数据点。在油气行业,大部分设备或传感器读数都是这种按照连续时点或深度点获取的数据。 < font-size: 16px;">叠加时序的分解又是什么?< font-size: 16px;">分解(Decomposition)是指将一个时序拆分为类似下图所示多个组件的操作。 < font-size: 16px;"> < font-size: 16px;">时序预测和异常检测 < font-size: 16px;"> < font-size: 16px;">异常检测是指找出与大部分数据集存在显著不同观测值的过程。 < font-size: 16px;"> < font-size: 16px;">这是一个利用Azure Data Explorer进行异常检测的范例 < font-size: 16px;">红线是原始时序。 < font-size: 16px;">蓝线是基准(季节+趋势)组件。 < font-size: 16px;">紫色点是原始时序基础上的异常点。 < font-size: 16px;">为了检测异常,可以使用Azure Stream Analytics或Azure Data Explorer进行实时分析并检测,如下图所示。 < font-size: 16px;"> < font-size: 16px;">Azure Stream Analytics< font-size: 16px;">是一种面向关键业务工作负载设计的,简单易用的实时分析服务。我们只需点击几次鼠标即可构建出端到端的Serverless流处理管道,使用SQL在几分钟内从零开始将其投入生产应用,或使用自定义代码对其进行扩展并通过内置的机器学习能力将其用于其他高级场景。 < font-size: 16px;">https://azure.microsoft.com/en-us/services/stream-analytics/ < font-size: 16px;">Azure Data Explore< font-size: 16px;">r是一个快速、完全托管的数据分析服务,可用于对来自应用程序、网站、IoT设备等来源的海量数据流进行近乎实时的分析。我们可以提出问题,并以迭代的方式即时探索数据,借此改善产品,改进客户体验,监控设备,促进运维,从数据中快速发现模式、异常和趋势。 < font-size: 16px;">https://azure.microsoft.com/en-us/services/data-explorer/ < font-size: 16px;">选择Azure Stream Analytics还是Azure Data Explorer? < font-size: 16px;">用例 < font-size: 16px;">Stream Analytics适用于持续的或流式的实时分析,它提供的聚合函数可支持跳转(Hopping)、滑动(Sliding)、翻转(Tumbling)或会话(Session)窗口。但如果你希望用JavaScript或C#之外的语言编写自己的UDF或UDA,或如果你的解决方案位于多种云或本地环境中,那么它可能并不适合你。 < font-size: 16px;">Data Explorer适用于按需或交互式近实时分析,针对海量数据流进行数据探索,季节性分解,即席工作,仪表板,以及从近实时数据或历史数据进行根本原因分析。如果需要将分析能力部署在边缘,那么它并不适合你。 < font-size: 16px;">预测 < font-size: 16px;">我们可以通过设置让Stream Analytics作业与Azure Machine Learning Studio集成。 < font-size: 16px;">https://docs.microsoft.com/zh-cn/azure/stream-analytics/stream-analytics-machine-learning-integration-tutorial < font-size: 16px;">Data Explorer提供了根据相同分解模型预测时序的原生功能。这样的预测能力适合很多场景,例如预防式维护、资源规划等。 < font-size: 16px;">季节性 < font-size: 16px;">Stream Analytics不能支持季节性,对滑动窗口大小的支持也较为有限。 < font-size: 16px;">Data Explorer则提供了在时序内自动检测周期的功能,或者我们可以将其用于验证某个指标应具备特定的不同周期(前提是我们知道这些周期的存在)。 < font-size: 16px;">分解 < font-size: 16px;">Stream Analytics不支持分解。 < font-size: 16px;">Data Explorer可以获取一系列时序并自动将每个时序分解为季节性、趋势、残存以及基线组件。 < font-size: 16px;">筛选和分析 < font-size: 16px;">Stream Analytics可以检测峰谷或变化点。 < font-size: 16px;">Data Explorer提供的分析能力可以从一系列时序中找出异常点,并能在检测到异常后进行根本原因分析(RCA)。 < font-size: 16px;">筛选 < font-size: 16px;">Stream Analytics提供了可包含参考数据、慢速移动或静态数据的筛选器。 < font-size: 16px;">Data Explorer则提供了两种常规功能: < font-size: 16px;">有限冲激响应(Finite impulse response,FIR),可用于移动平均线、分化和形状匹配。 < font-size: 16px;">无限冲激响应(Infinite impulse response,IIR),可用于指数平滑和累积总和。 < font-size: 16px;">异常检测 < font-size: 16px;">Stream Analytics提供了下列检测: < font-size: 16px;">峰谷(临时异常) < font-size: 16px;">变动点(持久异常,例如水平或趋势的变化) < font-size: 16px;">Data Explorer提供了下列检测: < font-size: 16px;">基于增强型季节性分解模型的峰谷(支持自动化季节性检测,以及训练数据中异常现象的健壮性)。 < font-size: 16px;">分段线性回归的变动点(水平偏移、趋势变化)。 < font-size: 16px;">通过KQL内联Python/R插件实现与借助Python或R实现的其他模型的扩展性。 < font-size: 16px;">下一步? < font-size: 16px;">总的来说,Azure Data Analytics能够为每种类型的工作负载提供最适合的技术。新增的实时分析架构(参阅上文示意图)可供我们为每类工作负载使用最适合的技术进行流式分析或时序分析,包括进行异常检测。下列资源可以帮你进一步了解这些功能: < font-size: 16px;">如果还未进行,请通过这个GitHub代码库了解Azure Stream Analytics异常检测。 < font-size: 16px;">https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/stream-analytics/stream-analytics-machine-learning-anomaly-detection.md < font-size: 16px;">通过这个GitHub代码库了解Azure Data Explorer异常检测和预测以及Azure Data Explorer时序分析。 < font-size: 16px;">https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-explorer/anomaly-detection.md < font-size: 16px;">https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-explorer/time-series-analysis.md < font-size: 16px;">Azure Stream Analytics异常检测概述。 < font-size: 16px;">https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-machine-learning-anomaly-detection < font-size: 16px;">Azure Data Explorer异常检测和预测概述。 < font-size: 16px;">https://docs.microsoft.com/en-us/azure/data-explorer/anomaly-detection < font-size: 16px;">https://docs.microsoft.com/en-us/azure/data-explor网络营销系统er/anomaly-detection < font-size: 16px;">Azure Data Explorer时序分析文档和这篇博客文章。 < font-size: 16px;">https://docs.microsoft.com/en-us/azure/data-explorer/time-series-analysis < font-size: 16px;">https://azure.microsoft.com/en-us/blog/time-series-analysis-in-azure-data-explorer/ < font-size: 16px;">Kusto查询语言文档和时序分析 < font-size: 16px;">https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/machine-learning-and-tsa |
上一篇:eBay海外仓你了解吗?
下一篇:如何使用facebook开发客户?
基于对传统行业渠道的理解,对互联网行业的渠道我们可以下这样一个定义:一切...
小米应用商店的后台操作和苹果是比较相似的,因为都能填写100字符关键词,允许...
小米的规则目前是在变更中的,但是根据经验小米的搜索排名评分的高低是个很重...
为了恰饭,有时候是要接入一些广告的,所以FB也专门有一个广告的SDK,这就是A...
在 2018 年于旧金山举行的游戏开发者大会上,Amazon Web Services (AWS) 曾宣布,目前世...
关于Facebook Audience Network如何收款的问题,其实官方已经给了详细的步骤。本文主要...
本文介绍了Audience Network对广告载体的质量检查,以及它重点广告形式需要注意的问...
随着iOS开发,作为开发者或公司需要针对iOS App开发涉及的方方面面作出对应的信息...
Facebook和谷歌对出海企业广告渠道都很熟悉,但事实上,在国外还有一些渠道也很...
卖家从做号的第1分钟开始,就一定要想好变现路径是什么?一定要以变现为目的去...
小提示:您应该对本页介绍的“将Azure Data Explorer和Stream Analytics应用于异常检测”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通将Azure Data Explorer和Stream Analytics应用于异常检测的相关事宜。
关键词:将Azure,Data,Explorer和Stream