时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{实案分析:如何用一道多选题给用户画像?}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的实案分析:如何用一道多选题给用户画像?内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
现代商业离不开对用户的理解,任何业务的决策者都不会希望在认识用户上存在盲区,因此在用研的日常工作中,“做一个用户画像”是经常收到的需求。但同样的需求背后,往往对应着不同的目标和问题,搞清楚了解用户能帮助业务方解决什么问题,才能更有效地制定研究方案。大而全的数据平台,不一定可以和粒度很细的调研目标精确匹配;传统市场调研或设计调研的方法又会增加周期和成本,不适合短平快的项目。那么是否可以使用简单的测量-统计方法,较敏捷地得到一个需求方期望的“用户画像”呢?本文来分享这样一个案例。 (一)背景-为什么想做一个“用户画像”在接手话题版块改版方向调研的过程中,其中一项调研目标比较有意思:运营同学发现,网易新闻客户端话题版块中,一些女性相关话题活跃度格外高,这与对目标用户的预期有一些偏差。依照大家的印象,新闻客户端中壮年男性比例偏高,典型用户是一个体制内老刘的形象-时政、社会、历史、军事版块的重度读者-因此在话题运营上也更偏向了此类内容。然而偶尔为之的母婴、情感类的话题,无论从参与热度还是质量来考量,效果都不错。运营同学陷入思考之中,怀疑话题版块活跃着一些假的网易新闻用户。 那么话题社区的活跃用户真的与客户端整体不同吗?运营同学由此提出了调研需求,希望了解话题活跃用户的“性别、年龄、婚姻状况。。”等等的一揽子人口学变量描述,简言之-“做一个话题版块的用户画像”。 不管如何做,先梳理一下需求,把目标拆解成回答以下两个问题:
(二)以什么标准区分用户-一个简单的题目设计大家可能注意到,需求方在提需求的时候,顺带提了一下自己对用户区分维度的界定“性别、年龄、婚姻状况。。”。诚然,人口学变量用来区分用户很经典,但并不适用于所有研究目标,比如在本例中的效果就未必好。原因有二。首先,人口学变量并不直接能落地到业务,还需要基于业务理解进行二次推演,不够直观;而好的分类标准应该能直接与现有资源结合来指导业务;二是完全无预设的情况下,事前很难确定各个人口学变量的影响权重,那么如果需要进行探索性分析,需要在问题中纳入足够多的变量。这样短短问卷难以承载,也会让分析头绪无端变多。 所以研究用了另一个解决方案,直接用内容偏好特征来区分用户。这样做的好处是,作为内容分发平台,直接以内容偏好为标签的用户画像天然具有可落地的属性,而不必再通过人口学特征去推断。另外,对内容的需求偏好往往反映了一个人当前的综合状态-社会经济地位、文化倾向、人口学特征-可以预期是一个很有效的探测点。 相关的问题设计很简单,只是在问卷结尾处加一道内容偏好的多选,备选项参考了主流新闻app的版块分类。
这里有个问题简单说明一下-为什么要把选项切到这么碎,而不加以合并。这种处理方式实际是基于以下两点考虑。
因此,问题选项呈现采用了具体细分的列举,而细分项的合并化简,则将在问卷回收后,根据用户的实际反应来处理。 (三)让分析过程更简明-数据降维问卷投出去一段时间后,样本池渐渐上涨,内容偏好的数据饼图五彩斑斓地分布起来。这时就发现问卷选项细碎的不方便之处-同时考虑18个选项远远超出了人类工作记忆的负荷,让分析过程颇有些尾大不掉。当然这是意料之中的。如前所述,之所以把选项粒度做得很小,是希望通过用户的实际选择模式来找到相关联的内容。因此,首先要使用一下因子分析的方法,把数据进行浓缩。 岔开几句简单说说因子分析的用途。所谓因子分析,是处理多变量数据的一种常用的预处理方法,使用场景是当实际用于测量的变量较多且相关时,可以将比较琐碎繁多的变量,用几个易于解释的因子表达出来,从而更清晰地展示数据的结构和规律。拿这个项目来说,我们得到的多选题数据是用多重二分法表示的-每一个选项作为一个单独变量-题目反应数据共包括18个变量(如下图)。显然这些变量之间是存在相关关系的,存在归纳的可能,这正符合因子分析的使用场景。 因子分析使用SPSS完成,操作过程略去不表,分类结果如下图所示,将18个选项浓缩为5类因子。根据每个选项在各因子上的载荷(也就是原始选项和因子之间的相关系数),可以看出该因子大概代表了哪一类内容。为了便于理解,分别给它们起了一个比较直观的名字。如下图所示。 5个因子作为新的变量保存下来(如下图,注意保留下来的变量已经标准化为Z分数),留作后续进行用户聚类的依据。每个用户对某个因子分数越高,就意味着对该因子对应内容的偏好程度更强。例如第2个用户,就明显是“女性生活”因子相关内容的重度浏览者。 (四)为用户打内容偏好标签-聚类分析完成了数据化简,接下来根据用户在五个内容偏哈因子上的得分,对用户进行聚类分析。由于因子本身为Z分数,不用再进行标准化处理,直接分析即可。 这里再岔开几句简单说说聚类分析的原理。聚类算法的原理是通过计算各个案例点在变量空间中的距离远近(SPSS中计算距离的方法有30多种,大多数情况只选择默认设置的欧式距离就好),来把它们分簇处理的。变量空间名字听起来挺厉害,其实就是把n个变量当作n个坐标轴,参照三个维度构成三维“空间”的说法,将n个变量的情境称为n维空间。每个case在这n个变量上的取值,构成了一个n维坐标,根据坐标可以计算case间的距离,根据距离远近形成不同的分类簇。例如,上图表格中每一行都是一个五维坐标向量,描述了该行对应用户在“内容偏好空间”的位置,不同用户位置间的距离越近,就越可能被归为一类。 聚类分析仍使用SPSS完成,结果如下表所示。表格中数字代表每类用户对特定内容的偏好程度,数字越大偏好程度越高。根据几类用户的内容偏好模式分别起一个鲜明易记的名字,例如,给更偏好“女性生活”与“宅文化”内容的用户打上“时尚丽人”的标签。 现在每一位样本中的用户都有了一个内容偏好标签,这个标签也保存为一个新的变量(如下图),留待与其它题目进行交叉分析。 首先就可以用内容标签与人口学变量来交叉分析一下,验证一下偏好某类内容的用户是否具有比较特殊的人轮椅营销策略口学属性。结果如下图所示(具体数据略)。可以看到,尽管由于样本中男性比例偏大造成一些bias,相对趋势的比较还是验证了很多印象:例如“时尚丽人”中年轻女性的比例显著偏高,“财经科技控”高学历高收入比例显著高等等。 纳入与人口学变量的交叉分析结果,最终得到的用户分类如下表所示。从样本占比推断,“随意用户”和“时政历史迷”最有可能是客户端主流人群,这与业务经验得到的印象是一致的。 (五)哪类用户是话题版块的核心用户现在关键的问题来了,画像的几类人群,哪类是话题版块的核心用户、需要重点发力运营呢? 首先看看活跃用户中各类用户的占比(活跃度根据问卷中觉知情况和使用频次的问题答案来判断)。由下图可以看到,活跃用户的类别分布和整体差异并不大-“随意用户”和“时政历史迷”占了最大的部分。这也符合预期,毕竟话题版块的流量从客户端整体渗透过来,各类用户体量上不应该有太大的差异 那么哪种用户的增量潜力比较大呢?这个问题反过来看比较清晰-我们可以这样假设,如果某类人群中活跃用户比例越大,满意度越高,那么这类用户更可能是话题版块的目标用户。 首先将活跃度与内容偏好进行交叉分析。可以看到,“时尚丽人”中话题使用活跃者占比最高(42%),无觉知者占比则最低(29%)-年轻女性用户看起来天然对话题讨论很敏感。 再看一下满意度的差异。年轻女性用户对话题社区各方面的满意度都高于其他用户,她们在话题社区玩得更开心。 所以,给出结论&建议-年轻女性用户虽然在话题版块的体量不大,但她们的活跃度和满意度更高,讨论质量更好,对促进话题社区良性发展有很大帮助,可以从相关内容版块进行重点引流。而反过来,如果话题社区这种形式对“时尚丽人”独具吸引力,也可以将话题版块与时尚、母婴、情感等垂直频道打通,通过话题运营进行流量反哺。 最后,本例仅仅是基于调研目的灵活处理的一个例子,适合短平快的项目;如果需要系统了解用户,深入挖掘用户需求,更大的样本量和更扎实的定性研究依然是必不可少的。不过在日常工作中,有意识地以经济敏捷的方式扩展关于用户的基础知识,也不失为一种很好的积累沉淀吧。 (本案例数据和结论仅作为例子展示,不涉及真实情况)
作者:驴爷 来源:公众号:ME网易移动设计 版权:遵循行业规范,任何转载的稿件都会明确标注作者和来源,若标注有误,请联系主编QQ:419297645 公关危机管理的基本环节 |
上一篇:译文|如何通过设计同理心地图,更好地了解用
下一篇:用户中心型组织:“交心”才是底层交集
小提示:您应该对本页介绍的“实案分析:如何用一道多选题给用户画像?”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通实案分析:如何用一道多选题给用户画像?的相关事宜。
关键词:用户画像, 用研,