时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{分享|一个设计数据的使用思路}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的分享|一个设计数据的使用思路内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
数据的误区1、数据就是后台数据?提到数据,大家想到的可能是PV、UV、CTR、CVR等这些后台“大”数据,可以把它们叫做全量后台数据,这些数据可以帮我们了解大盘用户怎么使用产品的。 除了这些,通过用户研究得到的数据对设计工作也很有帮助(用研工作本质就是信息数据的收集、分析提炼与转化过程),这些数据对场景、用户及态度的细节描述可以给设计很多启发,可以把它们叫做抽样的调研数据。把数据广义的拆分为两大类,全量后台数据包括用户、流量、交易这3个方面,抽样调研数据分为定性、定量两方面,数据应该是多方面的汇入。 2、数据是用来验证设计效果的?经常有同学问我:“前段时间上线了XX,应该看哪些数据来衡量设计效果?”,发现大家对数据的使用还比较偏后期的效果评估。实际上,在接到设计需求启动设计时,就应该思考这个问题了,搞清楚为什么设计、为什么做这样的设计是看数据的前提,这些早已决定了最终要看什么数据。数据驱动设计应该是目标导向并贯穿整个设计过程的。 从最初启发思路发散创新形成设计方案,到方案判断对比取舍后的开发上线,再到评估效果验证设计方案,以及后续通过数据发现问题锁定原因进行迭代优化。 3、跟PM看一样的数据?在一些复盘项目中看到有设计同学用“UV提升”、”访购率提升”等PM同学的KPI来评估设计工作,这样做可能不够细致。PM同学更关注宏观的业务数据,作为设计师需要了解,但具体设计执行过程中不够聚焦,且没有或很少涉及用户体验方面,比如UV会受运营影响比较大。 设计需求千差万别,设计目标也各有不同,同一个页面不同时期也会有不同的目标。需要区分具体问题具体场景,根据特定的设计目标,关注与设计方案“更有关系”的数据。 设计过程看哪些数据?设计数据需要细分!Do or Die!(有本书翻译为不细分毋宁死),是说不细分的数据没有意义。 这是我常用的部分数据指标,大概写了一些。数据指标千千万,外部各种书和网站上有不少介绍,内部黑话也提及很多。有些同学虽然知道很多指标,但选取过程仍会有困惑,这么多到底看哪些?仅知道是不够的,因为真正跟某次设计有关系的指标并没有多少。熟悉但不要拘泥于指标,数据驱动设计过程不应为了看数据而看数据,更应有一套成熟方法作为思路指导。 系统化搭建指标体系方法任何事物和现象都应该是可测量的,关键是要知道怎么去测量和解释,并能意识到我们所拥有的各种数据的用处。通过一定方搭建指标体系后,会发现我们可以用的数据比想象的要多,真正需要的数据也并没有想象的那么多,这里分享一个设计数据的使用思路。 1、GSM模型GSM是Google提出的一种量化方法,主要思路是通过对目标的拆解,一步步推导得出最应该关注的关键数据指标(KPIs,Key Performance Indicators)。这种目标导向的推导过程,能更科学、系统化的搭建指标体系,经过推导得到的数据指标与设计工作关系更紧密,能更好的评估设计目标完成情况。
2、指标体系搭建过程通过GSM搭建指标体系,用于特定场景的数据需求,更合理的使用数据驱动设计工作。 (1)识别并明确目标(Goal)
(2)推导目标对应的表现(Signal)
(3)找出关键的数据指标(Metric)
通过上面三步,推导得到关键数据指标体系: 来,看个例子,假设某次有两个目标:增强导流效果、提升页面吸引力,根据这两个目标推导数据指标过程如宣传海报价位下: 其中,目标、表现、指标并不只是一一对应的关系,通常情况下,从某个目标可以推导出多个用户表现,某个用户表现也能找到多个对应的数据指标。看两个例子,目标1和目标2按照GSM推导数据指标的过程如下: 3、GSM扩展如果GSM使用起来不够熟练,在改版项目中,可以将其扩展为GASM(增加优化点Action),方便快速搭建。 这种情况下,整个推导过程同GSM: 举个例子,某次设计为了提高页面的流量分发效率,对运营模块进行了优化,指标体系的搭建过程可以是: 4、一些思考框架GSM推导过程中,从目标到信号可以参考一些思考框架来发散思考维度,更全面的考虑如何诠释目标,及更有针对性的选取合适指标。不同模型侧重点有所差异,这个过程注意区分维度和指标。 HEART模型:同时考虑商业指标和体验指标,是结合用户体验周期、用户主观态度与行为的全面体现,不同维度下的指标举例如下: 用户行为路径:从用户使用产病毒性营销的方案品过程中涉及的行为路径进行划分,涉及4个关键行为阶段:访问、引导、转化、留存。 5、指标体系推进指标体系搭建完成后,还需与产品、RD同学讨论明确涉及的模块及具体的指标定义,交付RD埋点。 举个例子,某次对猫眼选座页调研发现,这个页面最大的问题是选座过程中缩放效果影响用户选座效率,优化时根据GSM搭建了一套指标体系,形成下面表格,作为与相关同学讨论的对象和和后续埋点的基础。 后续还有很多细节工作,不再赘述。让数据说话,却不完全按数据说话,希望大家能有理有据的输出更多好的设计。 相关参考Measuring the User Experience on互联网客户营销 a Large Scale: User-Centered Metrics for Web Applications
作者:周永杰 来源:微信公众号【美团UED】 |
上一篇:以哈尔滨冰雪大世界旅游的传播效应为例,谈数
下一篇:产品经理,你可知道AARRR模型?
小提示:您应该对本页介绍的“分享|一个设计数据的使用思路”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通分享|一个设计数据的使用思路的相关事宜。
关键词:后台数据, 数据指标, 案例