时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{用户画像,没你想的那么复杂}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的用户画像,没你想的那么复杂内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
临近双十一,好多朋友都来向我咨询与增长业务相关的问题,各行各业的都有,但我本人确实没有实操过这么多行业,所以每次有人问我,如何实现项目增长,我都会先反问他们一个问题——你们的用户画像是怎样的? 久而久之我发现一个问题,很多公司其实都没有一个明确的用户画像,也就是说,他们自己都不知道自己的用户是谁。 更有甚者,连什么是用户画像都不清楚。 比如下面这位朋友,我让他发下他们业务的用户画像,兄台居然让我自己去查?然后发给我一份行业数据报告。 我:???? 其实做运营的同学和产品经理对“用户画像”四个字应该并不陌生,听了没有一千也有八百遍,但好像很少有人真正去了解什么是用户画像,以及用户画像是怎么产生的。 下面我就来仔细说下用户画像的概念、作用以及如何建立正确的用户画像,中间会用到几个小例子帮助大家理解,请收好。 01 什么是用户画像?用户画像又叫用户标签,是基于用户在互联网上留下的种种行为数据,将这些数据主动或被动的收集后,通过数据加工分析,产生的一个个标签。比如男性、90后、白领、喜欢购买电子产品、月工资15000等等。 用户画像的内容可以很宽泛,只要是对用户的认知,都可以叫做用户画像。但你所去认知的这批人必须是你的典型用户,他们会用相似的方式使用你的产品,服务或消费你的品牌。 02 用户画像的作用关于用户画像的作用,我认为主要有以下三点: 1. 精准营销我相信这是很多运营同学为什么来看这篇文章的原因,从简单液压阀企业网络营销策划方粗暴式操作到精细化的运营,将用户人群进行分层,再用短信、push、推文等手段,刺激用户对产品的使用、下单,或对用户进行召回等。 2. 广告投放品牌处于业务高速发展期时,需要大量对外曝光。由于推广预算有限,在渠道的选择上,就要求能有更多自己典型的用户进行推广,这时就需要用户画像的配合了。 3. 数据分析这个可以理解为建立数据仓库,利用各个标签将各个数据系统打通,比如之前的文章,讲的是利用公众号进行定向推送,那么把用户在公众号上的行为和电商APP上的行为均建立行为标签并打通,继而建立数据仓库,然后制作出用户画像,那么精细化的推送策略才是完美的。 03如何建立正确的用户画像?接下来来到了很多人最关心的部分,如何建立正确的用户画像。 首先需要明确一点,所有的用户画像都是基于业务模型的,很多同学连自己的业务模型都没有搞清楚,连业务场景和形态都没弄明白就开始做用户画像,基本上就是在做无用功。 下面我用一个小故事,来帮助大家理解,如何更好地建立正确的用户画像: 小明开始创业了,开发了一个APP售卖各类零食,经营半年后,效益非常不错。但是现在发现业绩增长乏力,加大推广投入后仍不见起色。于是找到我,希望我为他们建立一套精细化运营的策略来提升业绩。 当我跟小明进行深度沟通后发现,小明的团队一直都是粗暴式的运营,根本没有运用数据来驱动业务增长。于是我准备先帮小明梳理清楚他的用户画像,再来做下面的运营动作。 1. 画基本业务流程首先,我将他的最基本业务流程给画了出来: 按照这个图,首先我根据是否有购买过沙拉,将小明的用户划分成了5类:
这里分享一个神奇的数据,用户只要产生了一次复购,即一定时间内购买过2次,则此人的留存率将提升30%。
这样用户画像就出来几个了: 2. 增加用户标签之后,再通过用户的自身属性来增加用户标签。 我让小明把所有用户的订单全部导出来,以订单地址为依据来做判断。比如一个用户多次使用同一个地址收货,那么就判定此地址为常用地址,然后根据常用地址是公司写字楼还是学校,来判定此用户是白领还是学生。 对于学生和白领用户的运营策略,将会是完全不同的:
到这里,用户标签又丰富了几个。 3. 预测流失用户最后,我们通过用户在APP端的行为来预测流失用户。 我们从数据中发现,增长减缓的主要原因,是用户流失率开始上升。流失的原因会有很多,最重要的是找到用户不消费时间节点之前的关键因素。 比如:
原因特别多,把尽可能想到的原因都列出来,然后利用机器学习建模进行预判。(技术的问题这里就不分享了) 需要注意的是,所有这些都是动态的,所以我将用户的回购或再浏览周期定为7天(拍脑袋想的,买了一次零食后,7天内一定会吃完)。根据不同的业务情况,尽可能的将时间周期切分的更细一点,更容易分析。接着就按照数据情况,通过用户行为的细节进行预判。 有了这些判断,就可以在不同阶段有针对性的进行召回。 根据用户购买零食的偏好来分:
根据消费模型综合因素来分 此外,还可以用RFM模型(衡量客户价值和客户创造力能力的公交)来分(不了解RFM模型可以自行百度),这个就相对比较复杂一点,后面单独出一篇文章来讲。 看完这个案例,我相信你一定有点感觉了。 然后再来看这一套底层的生产思路:
第一步,确定业务目标 以应用来驱动需求。很多同学都会犯都一个错误,他在做用户画像多时候,一次性能搞出几千个标签。其实这并没有什么用,因为你根本用不了这么多标签,你还会被这么多标签搞得不知道怎么办。 第二步,跑出数据,生产标签 数据是一切的核心,没有数据说要建很多标签是没有用的,如果你手里没有数据,或者数据不多,你第一个工作不是建后面的标签体系,而是要赶紧找数据。 数据主要来源是用户在注册时填写的,还有在平台上的行为,无论是互动行为、浏览点击行为还是消费行为。然后通过这些行为来建立标签体系,当然有些标签是客观存在的,有些标签是根据逻辑预测出来的。 比如填了性别的,或者通过微信的unionid获取的,这就是客观存在的;但是如果这些信息都没有,那就根据用户的名字进行预测,像王小红基本就是女性,王小虎基本就是男性了。当然,预测一定是会有误差的。 一般我们会通过用户属性和行为数据,建立基础的用户标签体系 通常有这4大类:
第三步,分析数据,洞察用户 利用原始数据进行加工,建立模型标签。比如上文说到的我针对流失率提升,建立的预测模型,当你能洞察到某一类用户的某一些行为,就可以预判到这一类用户可能即将流失时,你就能用各种策略进行挽回了。 所以基于营销和消费相关的标签,新客、老客、用户的流失和忠诚、用户的消费水平和频率等,都是构成CRM(客户关系管理)的基础,可能大家更习惯叫它用户/会员管理运营平台。 第四步,应用标签 光有用户管理平台不行,还得转换成产品运营策略。不同的标签对应不同的用户群体,也对应不同的营销手段。CRM的结构中会包含各类触达用户的常用渠道比如短信、邮件、推送等。也包含CMS(内容管理系统),执行人员通过其快速配置活动页、活动通道、优惠券等,靠营销活动拉动数据。让数据跑起来产生闭环后,就可以让用户画像原来越清晰,标签越来越精准。 注意:不要拘泥于技术细节。用简单的方法快速走通整个流程,然后再去看哪些环节需要优化去深入,比如上面流失预测,可以把时间维度切分为一天甚至一小时,但是根本没必要。快速跑完整个环节才是核心。 #专栏作家#swimming,微信公众号:增长头马(ID:swimming5四川抖音号代运营公司怎么4),专栏作家。资深互联网运营,擅长裂变与营销,专注增长黑客技能领域技能探索与分享。 本文于。,。 题图来自 Unsplash,基于 CC0 协议 |
上一篇:B端客户画像,开个好头获客更容易
下一篇:课堂屏幕交互的经验分享,这些弯路不要走!
小提示:您应该对本页介绍的“用户画像,没你想的那么复杂”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通用户画像,没你想的那么复杂的相关事宜。
关键词:2年, 初级, 用户画像,