数据中台建设系列篇:什么样的企业适合建设数

时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络

小提示:您能找到这篇{数据中台建设系列篇:什么样的企业适合建设数}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的数据中台建设系列篇:什么样的企业适合建设数内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您!

编辑导语:近年来,数据中台特别火热,数据中台有着它的巨大价值。但是并不是所有企业都适合建设数据中台,需要依照实际情况进行理性分析,按需选择。我们一起来看看什么样的企业才适合建设数据中台吧。

上篇文章(:什么是数据中台)我们聊清楚了什么是数据中台,也知道了数据中台的巨大价值,那是不是就可以开始建设数据中台了呢?

我想,在正式进入数据中台建设之前,我们来聊聊什么样的企业适合建设数据中台,以便大家能够按照企业实际情况,理性分析,按需选择,防止盲目跟风带来巨大损失。

一、建设数据中台

前企业常见数据痛点由于工作原因,参与了多个数据中台项目,在此过程中,我发现很多企业在建设数据中台前通常会存在一系列的痛点,总结起来,可以概括为以下5大类:

1. 指标口径不统一

两张报表里面名称相同的指标【销售额】,展示的结果却不一样,业务怀疑数据有问题,便找开发排查,排查结果显示,这两个指标,一个含税,一个不含税。业务人员面对这些指标的时候,如果不知道指标的业务口径,很难去使用这些数据。

2. 需求响应时间长

随着需求的不断增长,运营和分析师抱怨需求的交付时间太长,无法满足快速发展和变化的业务对数据的敏捷研发要求。

3. 取数效率低

随着数据的不断增长,面对海量的数据表,运营和分析师们准确找到数据、理解数据变得越来越困难,大量临时取数工作只能依赖数据研发来完成,使得数据研发无法专注于数仓模型的构建上,从而形成【数据不完善——研发忙于各种临时取数需求——数据不完善】的恶性循环。

4. 数据质量差

时常有数据结果计算错误,导致做出错误的业务决策的情况发生。数据bug频发,故障溯源和恢复常常消耗大量时间。

5. 数据成本大

随着业务的发展和时间的推移,企业数据成本呈线性增长,企业每年要为此花费大量的真金白银。

通常,这些问题会随着数据中台的成功上线被解决掉。那数据中台是如何解决这些痛点的呢,在回答这个问题之前,我们先看看以上这些痛点背后的原因是什么?

二、问题背后的原因是什么

1. 指标口径不一致

通常表现在3各方面:业务口径不一致、计算逻辑不一致、数据来源不一致。

业务口径不一致:业务口径不一致的指标,应该要有不同的标识去区分,比如上面提到的销售额这一指标,明明口径是不一致的,但却没有区分,容易让业务误解。

计算逻辑不一致:业务口径的描述往往是一段话,但对于一些计算逻辑比价复杂的指标,一段话通常是描述不清楚的,如果碰巧两个相同业务口径的指标是不同的数据研发实现的,极有可能会出现计算逻辑不一致的情况。

数据来源不一致:对于部分指标,有多个数据源可供选择,如果数据源正好有些细微差异不被发现时,即使加工逻辑一样,也有可能结果不一致。另外,实时数据和离线数据也会有一定差异。

因此,要实现一致性,就要确保对同一个指标,只有一个业务口径,只加工一次,且数据来源必须一致。

2. 需求响应速度慢

主要在于烟囱式的开发模式,使得数据复用性低,导致大量重复逻辑代码的研发,影响需求响应速度。

比如,两个指标都需要对同一份原始数据进行清洗,原则上来说,只用一个任务对原始数据做清洗,产出一张明细表,另一个指标开发时,便可直接引用已经清洗好的明细表,这样便可节省一个清洗逻辑的研发工作量。但现实往往是对同一份原始数据个人抖音号和企业抖音号区做了两次清。洗。

因此,要解决需求响应速度慢的问题,就要提升数据的复用性,确保相同数据只加工一次,实现数据的共享。

3. 取数效率低

主要表现在两个方面,一方面是找不到数据,另一方面是取不到数据。

要解决找不到抖音子母号数据的问题,就要构建企业数据资产目录,让数据使用者快速找到并理解数据。取不到数据的主要是非技术人员不会写SQL去提取数据,所以可以为其提供自助取数工具,使其简单快速的获取数据。



4. 数据质量低

背后的原因主要是数据问题很难被主动发现和快速修复,经常是使用数据的人反馈投诉时才知道有问题。



数据的加工链路一般比较长,有时超过几十个上百个节点,收到问题反馈时,研发需要逐个任务去排查,然后再重跑有问题的任务及其下游链路的每个任务,这一过程往往需要花费很长的时间,导致故障恢复效率低。

因此,要解决数据质量低的问题,就要实现在业务反馈问题之前主动发现问题,并能快速恢复。

数据成本问题主要是数据重复建设导致的存储和计算资源的浪费,因此,解决这一问题的关键是提升数据共享能力,避免数据重复建设,消除冗余数据。

三、数据中台是如何解决这些问题的

1. 构建全局一致的指标词典,实现指标体系化管理

按照数仓主题域的方式对所有指标统一命名、分类,明确指标口径、数据来源、计算逻辑,产出企业的指标词典,由专门团队来负责指标口径的管控;

设计上线方便业务人员查询的指标词典管理系统,所有的数据产品、数据报表都引用指标系统的口径,当鼠标Hover到某个指标上时,浮现该指标的指标口径定义。

2. 统一数仓建模,构建全局一直的公共层,提升数据复用性

制定统一的数仓建模规范,在模型设计阶段,强制相同聚合粒度的模型,度量不能重复,保证相同粒度的指标、度量只加工一次;建设数据地图,方便数据研发能快速查找并准确理解数据。

3. 提供企业数据地图和自助取数系统

数据中台构建了企业数据地图,数据使用者可通过数据地图快速了解企业当前有哪些数据,在哪张表里可以看到,关联了哪些指标和维度;

非技术人员可通过自主取数工具,选取指标,勾选指标的可分析维度,添加筛选条件,点击查询,就可以方便获取数据。

4. 配置数据质量稽核规则和数据预警

通过配置数据质量稽核规则和数据预警,对数据一致性、完整性、正确性和及时性进行监控,确保第一时间发现、恢复、通知数据问题。

5. 上线数据成本治理系统

数据治理系统可实现表维度、任务维度、应用维度的全面数据治理。比如一个30天内没有被访问的报表,我们认为其产出价值较低,这时我们可以结合这个报表的所有上游表和下游表产出任务,计算这张表的加工成本,有了价值和成本,便可计算出ROI,根据RO评估,实现低价值报表的及时发现和下线。

四、什么样的企业适合建设数据中台

数据中台的构建需要大量人力物力的投入,所以数据中台的建设一定要结合企业的现状,按需选择,不可盲目跟风。在我看来,企业在选择是否构建数据中台的时,可以从以下几个方面思考:

首先,看企业是否有一定的信息基础,是否实现了业务数据化的过程,有了一定的数据沉淀,数据中台,顾名思义,数据是基础,毕竟巧妇难为无米之炊;

其次,企业是否存在业务数据孤岛,是否有需要整合各个业务系统的数据,进行关联分析的需求,如果有,需要通过构建数据中台,打通数据孤岛,整合各业务系统数据,满足关联分析的需求。

比如某零售企业,在业务发展初期,商品、销售、供应链等都是独立的数据仓库,后期要构建智能补货系统,需要打通多个业务系统的数据,因此选择建设数据中台。

最后,在日常的数据使用过程中是否遇到指标口径不一致、需求响应速度慢、数据质量差、数据成本高等痛点。

如果满足前两个条件,且在数据应用中存在以上所述的一些痛点,那建精准广告投放系统议你可以考虑将数据中台项目提上日程了。

 

作者:微微;热爱技术的产品一枚,持续更新数据中台系列文章,“数据人创作者联盟”成员。

本文由@一个数据人的自留地 于。,

,基于CC0协议

数据中台建设系列篇:什么样的企业适合建设数

上一篇:用SIKT模型,让用户画像效果倍增
下一篇:数据+产品就是数据产品?漫谈数据可视化场景


版权声明:以上主题为“数据中台建设系列篇:什么样的企业适合建设数"的内容可能是本站网友自行发布,或者来至于网络。如有侵权欢迎联系我们客服QQ处理,谢谢。
相关内容
扫码咨询
    数据中台建设系列篇:什么样的企业适合建设数
    打开微信扫码或长按识别二维码

小提示:您应该对本页介绍的“数据中台建设系列篇:什么样的企业适合建设数”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通数据中台建设系列篇:什么样的企业适合建设数的相关事宜。

关键词:1年, 初级, 数据中台,

关于 | 业务 | 案例 | 免责 | 隐私
客服邮箱:545321@QQ.com
电话:400-021-1330 | 客服QQ:545321
沪ICP备12034177号 | 沪公网安备31010702002418号