时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{产品经理必备的数据分析入门三技能}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的产品经理必备的数据分析入门三技能内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
脱离了业务的数据分析都是耍流氓,所以在写这篇数据分析技能类文章之前,我先假定一个业务场景:某日化类电商产品经理想要通过2020年9月份的销售数据,找找看可以从哪些方面降本增效,在月度汇报的时候,根据数据分析结果制定接下来的战略方向。 那么根据这三个技能要怎么做呢?下面我们一一展示。 01 技能一:取数作为一个产品经理,你可能会纳闷为什么要学会取数?这等小事随便找个数据组的人去干好了。 这么说也没错,但是想象一下,你不可能只有这一次的需求,后边会遇到各种各样的需求,诸如:
想要解决这些问题,你自以为提取数需求就一切搞定,然而并不是,你会遇到以下困难: 第一:很多你提的数据需求都是较个性化且一次性的,对于数据同学来说,除非你是个很重要的业务部门,或者数据部门就是为你这个部门服务的;那么数据组同学必须要实现你提出的需求,不然很多这样的需求对他们来说没什么提升,久而久之也会厌烦。 第二:一个公司或者一个团队,不只是有你一个产品有取数需求,还会有多个运营组同学或者多个产品组同学都有取数需求,而且问到紧急程度,大家都会说很急。 这时候就会涉及到需求排期,你也急他也急,好一些的数据组同学肯定会说你们内部协商好了我再来做,脾气不怎么选择达人好的就说都不做了。如果你的需求可能确实并没有那么急,但是对于你验证一个问题或者产品接下来的规划至关重要,难道你要一直等着么?你能等,市场可不等你。 第三:提数需求只是属于业务支撑,对于数据组同学来说并不会有什么产出,也体现不出数据分析师的价值,人家年终汇报也没什么体现。 有人说,跟数据组同事搞好关系,关键时刻能够帮你一把,如果你总是这样有事没事耽误人家工作时间,时间浪费了,也没什么切实利益,就随便请人家吃一两顿饭、喝一两杯奶茶就解决了?人都是将心比心的,人家会帮你也是想有一天你能反过来帮他,不要总想着做一个只会吸取不会给予的吸血虫。 所谓技多不压身,学会取数不仅与人方便,也与己方便;你可以和数据组同学搞好关系,拜个师啥的,让数据同学教你一些快捷入手的取数技巧,这样在你遇到重要且求助无门的取数需求时,就可以自行解决,也不耽误工作效率。 在取数技能中,我们最需要修炼的是SQL技能,取数时,基本利抖音美食视频要怎么才能发用SQL的一些基础语法,就足够我们实现大部分的操作。 SQL基础语法包括Select、From、Where,基本的函数语法包括分组、统计、加减乘除的计算,能看懂英语单词就能明白SQL语法的含义。 以前言中说到的业务场景为例,首先需要到数据库中查询到2020年9月份的销售数据,SQL代码以及查询结果如下图: 02 技能二:用数用数之前,需要对数据的整体质量做评估,对于大数据量的情况,这一步还有专门的数据质量产品来完成;例如:Informatica的DataQual活动策划哪家好ity、IBM的QualityStage、袋鼠云DataValid、网易EasyDQC等,感兴趣的同学可以自行搜索了解。 对于有明显数据质量问题的数据就需要进行数据清洗。数据清洗是指将取出来的数据中的脏数据,例如:空值、异常值、错误值等使用ETL工具清洗或者让数据开发工程师协助处理,如果数据量少的也可使用Excel处理。 清洗之后的数据可使用Excel、python或者专业的BI工具,如tableau、fineBI等做数据可视化,将取出来的数据转换成可通俗易懂的图表。 有句俗语:十表不如一图。当我们取出来数据之后,单看数据很难发现其中有什么问题,处理成我们需要的图表后,能够很直观的反映出现阶段业务的情况。 在这个技能中,需要学会Excel、Python、BI等一些数据分析工具,来帮助我们处理数据以及将数据可视化;基本上学会这三个对于产品经理来说做数据分析,已经是绰绰有余了,不用一味沉迷于丰富工具的学习中。 python数据可视化: BI工具tableau数据可视化: Excel数据可视化: 经过第一步取数并清洗之后,利用Excel、python等工具作图表,如下图: 03 技能三:析数“析”是指解析的析;经过取数,用数,处理之后,要结合业务情况能分析出来数据给我们展现出的意思。 前面两部分都是讲做数据分析需要用到的工具有哪些,以及对应的工具干了什么事,这部分是讲如何利用数据指导业务、助力增长。 通过对第二步得到的图表分析,结合最初业务场景的目的,可以得出一些降本增效的结论: 根据用户地域分布图,可以看出用户群体在浙江、上海等长三角区域,广州深圳珠三角区域以及中西部重庆地区分布较多,那么可选择在这些地方创建发货基地,减少发货成本; 根据商品相关属性图,可以看出颜色越深的代表商品相关性越高,例如口红和面膜的相关系统是0.79,那么可以将这两样商品进行捆绑销售,或者在展示其中一件商品时,附带同时推荐另外一件商品,增加购买率。 根据男女用户转化率和销售额对比图分析,发现女生的转化率普遍高于男生,且销售额的高低受女生转化率高低的影响较大,可以选择多举办几次主要针对女性的活动,提升转化率。 根据用户年龄分布图和用户学历分布图分析,消费用户普遍在20-40岁,学历是本科和硕士人群较多,那么我们就可以有针对性的选择这样的区间用户投放广告,用来拉新。 等等……经过数据分析之后,针对业务场景目标中的增效降本已经有了初步的方案,那么就可以针对产品、运营、销售等做一些调整和规划。 数据分析的目的包括:
在这个业务场景中,分析的目的是探索性分析,即从数据中找出一些特点并得出一些可验证的结论,使得整个业务的发展有方向性;所以我们做数据分析之前一定要先明确目的,带着目的去分析,确定适合的数据、适合的工具、适合的方法、适合的分析模型。 不只是做数据分析要明确目的,干什么事都要有针对性。就像前面两项的技能学习,首先要明确为什么要学?学会之后拿来做什么?学习起来才会事半功倍,而不是胡子眉毛一把抓。 每个行业的数据分析流程相似,但是分析的模式和内容差别很大,做好数据分析除了数据分析基础能力,还需要拥有对行业的认知。 不论我们学习什么样的分析工具,都是辅助我们高效工作的一个途径,最值钱的还是分析逻辑和思维。 作为产品经理,数据分析技能重要的还是“析”,如何从数据中寻找到让产品变得更好、让业务获得增长的方向是我们最应该着重去培养的技能;希望大家能够在高效工作的同时,还需要去着重锻炼自己的数据分析思维。 加油学习吧!老铁们。
本文由 @金豌豆于,, ,基于 CC0 协议 |
上一篇:万字干货:越过18个让数据变成谎言的陷阱
下一篇:数据可视化必修课:图表篇
小提示:您应该对本页介绍的“产品经理必备的数据分析入门三技能”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通产品经理必备的数据分析入门三技能的相关事宜。
关键词:1年, 初级, 数据分析技能