时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{常见用户行为分析模型解析(8)—— 归因分析}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的常见用户行为分析模型解析(8)—— 归因分析内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
在 PC 互联网时代,一个网站吸引新用户的主要方式之一就是投放线上广告。而同样一篇广告可以投放至多个渠道,一个用户也可能在不同渠道商多次看到广告才发生购买。这时候用户虽然是最后一次看到广告才发生点击,但前面的几次曝光 可能给用户留下了印象,建立了心理认知,因此对用户的本次点击亦有贡献。 那么如何将用户点击行为的“贡献”合理地 分配到每一个渠道呢?这便是渠道归因要解决的问题。通过渠道归因来衡量渠道的效果,反过来可以指导业务人员在渠道 投放时合理分配投入。 一、归因分析概述随着移动互联网的兴起,业务的形态越来越复杂,站内归因(也常被称作“坑位归因”)的需求日趋增多。以自营电商为 例:同样的一个商品,可能会在站内多处“坑位”产生曝光,比如:首页 Banner 的特卖活动页、商品详情页的相关推荐、 购物车页面下方的推荐列表中。运营人员会需要知道这些“坑位”对商品最终成单产生的“贡献”分别是多大,从而指导 站内的商品运营工作,例如将主推的商品推至成单贡献度高的坑位中,给予更在线调查问卷多的曝光从而带来更多的转化。 对于归因分析而言,一个很重要的命题即是,针对当前的场景和目标,怎么把“贡献”合上海推广文案哪个平台效果理分配到每一个坑位上。下面我 们就以站内归因为例,普及一下几种常见的归因分析计算思路。假设一个用户一天内使用 APP 的行为顺序如下: 首先,启动 APP,进入首页,先行搜索,在搜索结果列表页看到了商品 A,浏览了商品 A 的详情,觉得不错,但是并未购买, 退出 APP。然后,再次启动 APP,看到首页顶部 Banner,点击进入活动分会场,浏览过程中再次看到商品 A,点击再次 查看商品 A 详情。接着,直接退出到了首页,底部推荐列表中推荐了一篇商品 A 的用户评论,点击进入,再次查看商品 A 的详细信息。最后,下定决心,购买了商品 A。 以上过程是一个非常典型的用户购买决策路径,在整个过程中用户一共三次浏览到了商品 A 的详情页,均通过不同的入口 发生访问。如果将这个用户的成单转化的功劳分配到对应的 3 个坑位上,实际上这类问题其实并没有标准答案。以下介绍 几种常见的思路供参考。 图 四种常见的归因思路 1. 首次归因多个待选中触点时,认为第一个的功劳为 100%。理由是第一个触点给用户建立了认知,与用户形成了连接。适用于重视 新用户线索的业务。 2. 末次归因多个待选中触点时,认为最后一个的功劳为 100%。这种思路适用范围最为广泛,常用于电商业务的站内归因的计算。 3. 线性归因多个待选中触点时,认为每个“待归因事件”平均分配此次功劳。适合坑位效果比较平均的产品。 4. 位置归因多个待选中触点时,认为第一个和最后一个各占 40% 功劳,其余平分剩余的 20% 功劳。兼顾最初的线索和最终的决策。 除此之外,还有“时间筛选归因”,“末次非直接点击”的归因计算思路,此处不再详细阐述,感兴趣的读者可进一步查阅 相关资料。以上每一种归因计算思路均有各自的考量和不同的适用范围,没有绝对的孰优孰劣,在实际的应用过程当中, 需要根据自身业务特点来选择合适的归因计算思路。 二、归因分析应用示例1. 场景:电商业务下站内归因回到上面那个电商案例中,我们对 2月3日至2月5日成交订单进行归因分析,此处我们选用的归因计算方式是“末次归因”。归因窗口期设为 1 天,即观察用户在发生订单行为之前的 24 时之内点击了哪些坑位。然后再找到离“提交订单”最 近的一个坑位点击行为。 最终得到的结果如下图,APP 内多个坑位中,首页精选推荐,商详页相关推荐,首页 Banner 以及首页运营位对于成单的 贡献分别占据了 37.5%、20.83%、20.83%、12.5%。搜索和购物车下方的相关推荐仅带来不足 10% 的成单贡献。通过这 个结果,可以清晰地反映如下几点信息:
图 电商业务下的站内余额宝危机公关归因 注:总点击数和有效点击次数的区别。在所选的时间段内以及往前回溯的窗口期,总点击数是总共发生了多少次坑位点击,其中绝大部分是没有带来最终成单转化的,而带来的成单转化的那些点击即视作为有效点击数。因此有效转化点击率可能衡量坑位的吸引程度。转化率越高则吸引程度越大,发生一次坑位点击则有更大的概率带来转化。 事实上,凡是有成交、充值环节的业务,都可以通过归因分析来帮助我们在众多的营销触点当中,找到最有效、对用户认知影响最明显的一个或几个触点。以此来指导我们在后续的站内资源位分配时,给不同的业务分配最适合它的资源位。 #相关阅读#
作者:张乔,神策数据内容营销负责人。公众号:神策数据 本文由@张乔 于,,。 ,基于CC0协议。 |
上一篇:数据分析基础思维之:对比思维
下一篇:常见用户行为分析模型解析(9)—— 分布分析
小提示:您应该对本页介绍的“常见用户行为分析模型解析(8)—— 归因分析”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通常见用户行为分析模型解析(8)—— 归因分析的相关事宜。
关键词:1年, 初级, 归因分析, 用户