时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{网约车数据产品实战一:设计数据体系}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的网约车数据产品实战一:设计数据体系内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
一、如何着手初接到任务的时候,没有0-1数据产品经验的我还是很无从下手的。但静下心来仔细思考数据产品的本质,无外乎两件事情:提取指标、辅助决策。 高效、精准地提取出业务指标是数据产品的根基,因为巧妇难为无米之炊。而辅助决策则需要依赖一些可视化工具,市面上有很多:Tableau、PowerBi、FineBi危机善后公关等等,我们最终选择微软提供的PowerBi为我们提供指标可视化能力,接下来的难点便在于提取数据指标了。 二、从目标开始数据体系作为指标体系的前置条件,其架构的稳定性和延展性决定了输出的指标数据能否满足业务方的各类应用场景,能否适应业务的横向拓展。以下罗列几点数据体系的设计目标:
三、确定整体架构整体架构如下图所示(重点关注指标提取层): 指标分为两大板块: 1. 实时指标定义:今日实时产生的指标数据,如今日发单量、今日完单量、今日出车司机数等等。指标要求最少5秒一次刷新。 用途:制作实时数据仪表盘、战术大盘等。 方法:SQL语句提取指标,各个指标数据组装为json格式,每隔2-3秒post到PowerBi的流式数据集api。 2. 汇总指标晋江网络公司哪家推广效果定义:包含今日和历史的业务指标,如昨日注册司机数、昨日活跃司机数、今日出车司机数等等。「汇总指标」包含了「今日指标」。 用途:制作多维度指标图表,如折线图、饼状图、组合图、核心指标表等。 方法:
四、总结与探讨几点经验 1、合理利用异步思想:本次历史业务指标的设计思路即为异步思想,将“指标提取”和“指标数据读取”进行解耦并异步处理; 2、领域间保持一致性维度:各领域的业务数据(如财务、资产、运营、客服等),虽数据源不同,但大多数可以通过相同的维度进行打通关联。如时间、城市等。 探讨几个问题 1、每天凌晨2点生产昨日的数据指标,意味着0~2点存在两个小时的空档期,此期间无法获取前一日的指标数据(因为获取实时指标和今日指标的脚本亦不会获取昨日数据) 2、文中的数据体系通过怎样的低成本优化,可以支撑更复杂的应用场景,如用户标签系统、运营策略实验系统等。(后续将更新专题文章探讨这一课题)
作者:Sean,公众号:SeanZ的自我修养 本文由 @Sean 于,, 题图来自 ,基于 CC0 协议 |
上一篇:扭曲数据的9大手段,数据分析师速看!
下一篇:产品经理与数据的恩怨情仇
小提示:您应该对本页介绍的“网约车数据产品实战一:设计数据体系”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通网约车数据产品实战一:设计数据体系的相关事宜。
关键词:1年, 初级, 实战, 数据产品