时间:2023-01-19 | 标签: | 作者:Q8 | 来源:网络
小提示:您能找到这篇{从技术和业务视角,认识数据平台}绝对不是偶然,我们能帮您找到潜在客户,解决您的困扰。如果您对本页介绍的从技术和业务视角,认识数据平台内容感兴趣,有相关需求意向欢迎拨打我们的服务热线,或留言咨询,我们将第一时间联系您! |
一、什么是数据平台?数据平台字面的意思是“数据+平台”:
整体看数据平台是由「数据流程」和「业务流程」两大运转主体共同构成的解决方案,两大主体相辅相成、互相依赖、密不可分。
二、数据的技术视角数据从生产到应用的整体流程是任何一个数据从业者都绕不开的主题,即便是非数据领域的产品和运营同学,同样也应该对业务中数据的流向有个初步的认识。要展开描述,闵行区常规软文推广推荐我们必须从数据的技术视角思考两个问题:
1. 需要解决的问题是什么?
2. 数据流的不同阶段如何保证最优解? 「立足现状,具体问题具体分析」,不同企业所处的业务发展阶段不同,所面对的问题会不一样。同样,业务本身特性及企业对数据建设的资源倾斜程度不同,也会直接影响数据全流程处理的差异。最重要的还是立足于现状,站在更高的战略视角去思考整体的解决方案。下面从技术视角以“数据流”为骨架展开讲解数据产生至应用各环节中我们分别需要做什么: 2.1 数据产生 数据产生,这个阶段是最适合向业务方宣灌数据生产应用流程的阶段,因为该阶段的优劣将会直接影响之后的各环节。该阶段的关键字是「规范输入」,需要给数据上游的业务方提供可行的数据埋点规范(业务团队自身业务库除外):
2.2 数据采集 数据采集,这个阶段是一个既主动又被动的环节。我们偶尔会收到xx业务方的疑问“为什么业务上线了,没有看到数据”,排查后才发现是因为模块日志并没有被采集。那该环节关键字便是「让日志被正确的采集」
2.3 数据处理 数据处理、清洗是数据输入到仓库的前置阶段,该阶段关键字是「清洗规则」,目的是建立符合业务需要的数据清洗方案。比如什么格式的数据该被过滤;比如在广告投放中,用户符合哪种规则算是作弊用户;比如在用户行为数据中,符合哪种特征的行为算是爬虫用户等等。 2.4 数据仓库 数据仓库面向应用而生,该阶段的关键字是「分层、建模」。为了保证数据的普遍适用性及拓展性,会对仓库进行分层,通常分为:源数据层、数据仓库层、数据集市层、数据应用层。常见数据仓库模型为“星型模型”,星型模型就是一种典型的维度模型。我们在进行维度建模的时候会建一张事实表,这个事实表就是星型模型的中心,然后会有一堆维度表,这些维度表就是向外发散的星星。 2.5 数据计算 数据计算是数据变活的过程,主要分为离线和实时计算,该阶段的关键字是「准确、稳定」。会按照不同业务单元的需要,设计数据指标,并按照不同场景中的业务逻辑确定统计规则,最终由系统实现例行计算。数据本身并不具备任何价值,但一旦我们将它变为衡量事情的标准、将它变为洞察业务的眼睛,它就有了不可估量的力量。 2.6 数据应用 数据的应用是数据网络推广 南京最终产生价值的部分,该阶段的关键字是「完善、洞察」。基于数据流前面的流程处理,该环节最终会提供给应用方业务报表、数据访问、自动化工具、统计模型等应用;以下描述了数据平台和数据应用方在应用阶段需要长期持续关注的问题:
2.7 元数据管理 元数据管理贯穿整个数据流程始终,是一个较为宽泛的概念,元数据治理的好坏将直接决定了整个数据平台的品质。元数据管理主要分为三部分:技术元数据、业务元数据、过程元数据。
三、数据的业务视角基于立场的不同,导致了从业务视角与从技术视角看到的表现层内容会不一样,但究其本质是相通的。无论数据在应用层面以何种方案最终呈现,最终都是为了解决问题而存在;参考「黄金圈法则」我们同样也需要从数据的业务视角去思考三个问题:
1. 为什么需要数据团队解决?(why)「闻道有先后,术业有专攻」与「有所为而有所不为」,业务技术团队的定位是服务于业务一线,数据团队的定位是提供专业性的数据解决方案,二者分工上的差异性决定了解决问题的最佳路径。如下列举了需要数据团队解决几类问题:
2. 需要解决的问题是什么?(how)(1)我的业务是什么 不同业务单元依据自身业务属性,需要数据团队解决的数据问题也不一样。如市场团队关注应用市场投放相关的数据,客户端团队关注设备/应用版本/用户转化相关的属性数基础设施市场调查据,运营团队关注活动相关数据,风控团队关注风控相关数据等。 (2)我该如何衡量它们 团队属性的不同,也决定了量化到数据指标的衡量标注不同。各业务团队拥有自己的关键唯一指标和对应拆解/下钻的指标体系。 (3)如何让数据驱动业务 市场团队通过衡量不同渠道来源用户的质量,评估渠道ROI,优化投放策略;客户端团队通过观察不同产品方案的转化效果,改进注册及其他核心行为发生的主流程设计;运营团队通过用户细分,评估不同用户群在活动对的转化效果,进行精细化运营等。 3. 通过什么方式解决?(what)以下从业务视角拆解数据平台产品解决方案: 3.1 实时监控
3.2 离线分析
3.3 精细化运营工具
3.4 智能预警及分析
3.5 其他解决方案
依据以上,我们可以从业务视角总结出数据平台产品矩阵,下图为参考示例: 四、最后我们在实际工作中,技术视角和业务视角应该是交叉共存的。即在沿着技术视角去开展数据流链路上的工作时,也需要同时关注业务本身的情况,设计出更优雅的解决方案;同样在业务视角应用数据手段去推进工作时,也需要关注数据流中各阶段上潜在的问题与风险点。 道阻且长,溯洄从之。
作者:蒋坤伟,转转产品经理;个人公众号:黑夜月 本文由 @黑夜月于,未经作者许可,。 题图来自 Pexels,基于 CC0 协议 |
上一篇:产品经理该如何做好数据埋点?
下一篇:数据说话:消费降级?只是朋友圈的幻觉
小提示:您应该对本页介绍的“从技术和业务视角,认识数据平台”相关内容感兴趣,若您有相关需求欢迎拨打我们的服务热线或留言咨询,我们尽快与您联系沟通从技术和业务视角,认识数据平台的相关事宜。
关键词:3年, 中级, 技术视角, 数据